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Abstract

We study the influence of explanatory variables in prediction by looking at the 
distribution of the log-odds ratio. We also consider the predictive influence of a 
subset of unobserved future variables on the distribution of log-odds ratio as well 
as in a logistic model, via the Bayesian predictive density of a future observation. 
This problem is considered for dichotomous, as well as continuous explanatory 
variables.
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in dealing with 2×2 tables in biomedical studies and clinical trials. 
The distribution of the log of sample OR is often approximated 
by a normal distribution with true log OR as the mean and with 
variance estimated by the sum of the reciprocal of the four cell 
frequencies in the 2×2 table Breslow [1]. Böhning et al. [2] provide 
detailed book-length discussion on the OR. For logistic regression, 
ORs enable one to examine the effect of explanatory variables in 
that relationship.

Logistic link is perhaps the most popular way to model the 
success probabilities of a binary variable. Pregibon [3], Cook and 
Weisberg [4] and Johnson [5] have considered the problem of the 
influence of observations for logistic regression models. Several 
measures have been suggested to identify observations in the 
data set which are influential relative to the estimation of the 
vector of regression coefficients, the deviance, the determination 
of predictive probabilities and the classification of future 
observations.

Bhattacharjee & Dunsmore [6] considered the effect on the 
predictive probability of a future observation of the omission of 
subsets of the explanatory variables. Mercier et al. [7] used logistic 
regression to determine whether age and/or gender were a factor 
influencing severity of injuries suffered in head-on automobile 
collisions on rural highways. Zellner et al. [8] considered the 
problem of variable selection in logistic regression to compare 
the performance of stepwise selection procedures with a bagging 
method.

In the present paper, our aim is to measure the predictive 
influence of a subset of explanatory variables in log-odds ratio of 
a logistic model using a Bayesian approach. We are also interested 
in studying the effect of missing future explanatory variables on 
Bayes prediction, on a logistic model as well as on the log-odds 
ratio.

In Section 2, we derive the predictive densities of a future log-
odds ratio for both the full model and a subset deleted model. We 
derive the predictive density of log-odds ratio in Section 3, when 
a subset of future explanatory variables is missing. To derive 
the predictive densities we assume that the future explanatory 
variables fx  are distributed as multivariate normal, both when 
these xf’s are independent or dependent. In Section 4, we discuss the 
influence of future missing explanatory variables by considering 
the predictive probability of a future response in a logistic model. 
This is done by assuming that the future explanatory variables fx  
are multivariate normal for the continuous case. Also considered 
is the dichotomous case. Since the predictive probabilities are not 
mathematically tractable for the logistic model, we use several 
approximations.

In Section 2 and 3 we employ Kullback-Leibler [9] directed 
measure of divergence DKL to assess the influence of variables 
and also the influence of future missing variables on the log-odds 
ratio. The form of the Kullback-Leibler [9] measure used here is 
given by
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To assess the influence of missing future variables or to 
measure the predictive probability in a logistic model we use the 
absolute difference of the two predictive probabilities.

Influence of variables in Log-odds Ratio
Consider a phase III clinical trial with two competing 

treatments, say A and B, having binary responses. Suppose n  
patients are randomly allocated with A

n
 

and B
n  patients to 

treatments A and B respectively. The patient responses are 
influenced by a covariate vector 1px × where one component of 
x may be 1 (which covers the constant term). Let (

i
Y ;

i
Z ;

i
x ) be 

the data corresponding to its patient, where Yi is the indicator of 
response (

i
Y =1 or 0 for a success or failure), iz  is the indicator of 

the treatment assignment ( 1iz = )

or 0 according as treatment A or B is applied to the its patient), 
and x is the covariate vector. We assume a logit model for the 
responses:
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and hence the log-odds ratio is
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Let us partition

A A B B AB AB
x x x xβ β β β= + +

Where Ax  indicates the variables used in treatment A only, Bx  
is for treatment B only, and ABx is for both treatments A and B. 
Then the model can be partitioned for treatments A and B as:

( ) ( )log
A A A AB AB A A

O u x x xβ β β= = ∆ + + =                 (ii)

( ) ( )log
B A B AB AB B B

O v x x xβ β β= = + =                        (iii)

The predictive density of future log-odds for A, fu  , for non-
informative prior (vague prior) with normal or any spherical 
symmetric errors is of Student form Jammalamadaka et al. [10] 

and is given by
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where ( )
ˆ

A
β is the MLE of ( )A

β , ( )
2

A
s  is the MLE of 

2

A
σ  and k 

is the number of parameters in the model (ii). See Bhattacharjee 
et al. [11] in this context. If the sample size is large then this 
predictive density can be well approximated by its asymptotic 
normal form
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Similarly one can find the same for treatment B, fv .

Let us define ( )',f f fw u v= and ( )'1, 1a = − . Then the 

predictive density of future log odds ratio ' fa w  is given by
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and

Our interest is to measure the influence of explanatory 
variables in the predictive density (iv) for the following cases:

Case 1: Influence of r  explanatory variables r
Ax  of Ax  in 

treatment A.

Case 2: Influence of r  explanatory variables r
Bx  of Bx  in 

treatment B.

Case 3: Influence of s  explanatory variables s

AB
x  of ABx  in 

treatment A.

Case 4: Influence of s  explanatory variables s

AB
x

 
of ABx  in 

treatment B.

Case 5: Joint influence of r  explanatory variables r
Ax of Ax  and 

s explanatory variables s

AB
x of ABx in treatment A.

Case 6: Joint influence of r explanatory variables r
Bx  of Bx  and 

s explanatory variables s

AB
x

 
of ABx  in treatment B.
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To see the influence of explanatory variables in log-odds 
ratio, we construct a reduced log-odds model deleting a subset 
of explanatory variables. Then we derive the predictive density of 
future log-odds ratio for reduced model and compare it with the 
predictive density (iv) for full model. It is enough to consider Case 
5 for illustration. We construct the reduced model by deleting 
variables r

Ax  of Ax  and s

AB
x  of ABx in (ii) as

( ) ( )
* * * * * *

A A AB AB A A
u x x xβ β β= ∆ + + =

Then the predictive density of fu is given by

The normal approximation of the predictive density is

Since no variable is missing in log
B

Oυ = , the predictive 
density of fυ is unaltered along with its normal approximation. 
Hence the predictive density of log-odds ratio ' fa w  under Case 
5 is given by
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To access the influence of the deleted variables we employ 

the Kullback-Leibler [9] directed measure of divergence DKL  

between the predictive densities of ' fa w for full model (iv) and 
reduced model (v). The form of K-L measure used here is given by
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The discrepancy measure DKL between the predictive densities 
(iv) and (v) reduces to
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due to difference of scale 

parameters of the two predictive densities (iv) and (v).

Example 1: Here we have considered a flu shot Data 
Pregibon [3]. A local health clinic sent fliers to its clients to 
encourage everyone, but especially older persons at high risk of 
complications, to get a flu shot for protection against an expected 
flu epidemic. In a pilot follow-up study, 159 clients were randomly 
selected and asked whether they actually received a flu shot. A 
client who received a flu shot was coded Y=1; and a client who 
did not receive a flu shot was coded Y=0. In addition, data were 
collected on their age ( )1x and their health awareness ( )2x . Also 
included in the data were client gender ( )3x , with males coded 

3
1x = and females coded 

3
0x = . Here we have divided whole 

data set into two groups A and B on the basis of gender that is 
group A corresponds to the male and group B corresponds to 
the female. We have computed 

KL
D to measure the influence 

of the deleted variable 
1

x  in group A and B separately and the 
discrepancies are drawn in Figure 1.

Similar figure can be obtained by deleting
2

x . From this figure 
the discrepancy is less around the mean of the deleted variable.

Example 2: This is a simulation exercise. Here we have drawn 
sample of size 159 from bivariate normal distribution and we 
have used means, variances and correlation coefficient of 

1
x and 

2
x of the above flu shot data of size 159 for generating the sample. 

Now using these 
1

x and 
2

x , we got response that is Y values and 
thereafter using this whole generated data set we have computed 

KL
D . Now we have repeated whole process 1000 times and 

computed means of 
KL

D s . The mean discrepancies are shown in 
Figure 2. Here we get the same conclusion as in the data example.

Influence of Missing Future Explanatory Variables in 
Log-Odds Ratio

Here the aim is to detect the predictive influence of a set of 

missing future explanatory variables in log-odds ratio of logistic 

model (i). Our interest is to detect the influence of missing future 

explanatory variables in the six cases pointed out in Section 2. Let 

in treatment A, r future variables missing from f

A
x and s future 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )
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variables missing from f

AB
x be denoted by ( )

( )r s f

A
x + . Similarly 

in treatment B, r future missing variables from f

B
x and s future 

variables missing from f

AB
x be denoted by ( )

( )r s f

B
x + . We assume 

that the errors of models (ii) and (iii) are normally distributed 

with zero means and variances ( )
1

A
τ − and ( )

1

B
τ − , respectively. 

We also assume that the conditional density of ( )
( )r s f

A
x +

 
given 

( )
* f

A
x is independent of ( )A

β and ( )A
τ and ( )

( )|r s f

B
x +  given ( )

* f

B
x is 

independent of ( )B
β and ( )B

τ , i.e.,
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.

fx denotes the future explanatory variables ( ).
fx

without ( )
( )
.

r s fx + .

Explanatory variables are continuous

We assume that ,f

i
x s are dependent and the distribution 

of ( )
f

A
x is ( )1k− -dimensional multivariate normal, i.e. 

( ) ( )
1

  ,f
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.
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A
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A
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As earlier it is enough to consider Case 5 to see the joint 
influence of r missing future explanatory variables rf

A
x of f

A
x

 
and 

s missing future explanatory variables sf

AB
x of f

AB
x  in treatment A. 

The density of fu when ( )
( )r s f

A
x + is missing is given by

( ) ( ) ( ) ( ) ( ) ( ) ( )
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Where *

i
η is the i th component of ( )

*
r s

η
+

and *
ij

ψ  is the ( ). thi j  

component of ( )
*

r s
ψ

+
. 

See
 

Bhattacharjee et al [11] in this context. Using Taylor’s 

expansion and improper prior density for both ( )A
β  and ( )A

τ , 

the approximate predictive density of fu  when ( )
( )r s f

A
x + is missing 

is given by
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evaluated at  ( )
ˆ

A
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A
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is the multiplicative factor for the second order Taylor’s approximation. If ( ) 'f
Ax s  are independent the corresponding approximate 

predictive density of fu is

( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1
* 2 2 2
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evaluated at ( )
ˆ
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β and ( )

2

A
s , where 

i
η and 2

i
ψ  are mean and variance of the ith missing variable and 
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. Since no future variable is missing in υ , the approximate 

predictive density of fυ is same as obtained in Section 2. Thus when ( )
f

A
x ’s are dependent the approximate predictive density of log-

odds ratio ' fa w for ( )
( )r s f

A
x + missing is given by
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The Kullback-Leibler [9] directed measure of divergence between the predictive densities (iv) when no variable is missing and the 
predictive density (vi) when r s+ future variables are missing is given by 

( ) ( )( ) ( ) ( )( )
( ) ( ) ( )( )

( )
2 2

2

2 2 2*
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If ( )
f

A
x ’s are independent the predictive density of ' fa w  

when ( )r s+  future variables are missing is same as (vi) and the 

corresponding Kullback-Leibler [9] measure 
KL

D is same as (vii) 

but replacing *

i
η  by 

i
η in ξ , ( ) ( )

*ˆ ˆ
A i A j ij

β β ψ  by ( )
2 2ˆ
A i i

β ψ in 2ω  and 

( ) ( )( )* ,  A Aij
Q β τ  by  ( ) ( )( ),  A Aij

Q β τ  in 
*γ , where 

i
η and 2

i
ψ are 

mean and variance of the ith missing variable.

Explanatory variables are dichotomous

Here we assume that all the explanatory variables are 
dichotomous and independent. We assume that the errors of 
models (ii) and (iii) are normally distributed with means zero 

and variances ( )
1

A
τ − and ( )

1

B
τ − respectively. To assess the influence 

of the missing variables in treatment A, we consider that ( )
f

A i
x is 

distributed as

( ) ( ) ( )
( )

( )( ) ( )
( )

1
Pr 1     1, 2,, 0, .. , 11, .

f fx
fA if f A i

A iA i A iA i A i

x
iX x x kθ θ
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The density of a future fu is

( ) ( ) ( ) ( ) ( ) ( )

1
1

0

| , ,  , .  
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f f f
A A A iA A i A

i

f u x N xβ τ β τ
−

−

=

    ≡ ∑      

If ( )
( )r f

A
x future variables are missing in treatment A, then the 

density of a future fu is given by
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The predictive density of fu when ( )
( )r f

A
x is missing is given by

               (viii)

which is not mathematically tractable. For vague prior densities for ( )A
β and ( )A

τ  and using Taylor’s expansion, the approximate 

predictive density of (viii) is
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Since there are no missing variables in fν , the density of fν is same as that can be obtained in Section 2. Then the predictive density 

of ' fa w is given by

( ) ( )

( )( )
( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ) ( )
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( )
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∑

 (ix) 

 Analytical solution of DKL between the predictive densities 
(iv) and (ix) is very difficult to obtain but numerical solution 
can be obtained. In Some situations it is seen that among the 
explanatory variables, some of the variables are dichotomous 
and some of the variables are continuous. Among the 1k −
-explanatory variables, without loss of generality we assume that 

the first l  are dichotomous and the remaining last 1k l− − are 
continuous variables. We also assume that out of l dichotomous 
future variables last d variables are missing and out of ( 1)k l− −
continuous future variables last g variables are missing. Then 

the predictive density of future log-odds ratio ' fa w when d 
dichotomous and g continuous variables are missing is given by
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Again, analytical solution of DKL between the predictive 
densities (iv) and (x) is very difficult but we can obtain its 
numerical solution. In similar way we can derive the predictive 
density of future log-odds ratio when some future variables are 
missing in treatment B.

Example 1 revisited: This example is based on the flu shot 
data of Example 1. From Figure 3 we have observed same as 
Examples 1 and 2 that the discrepancies are less around the 
mean of the missing variables. Moreover we have observed from 
Figures 1 and 3 that the discrepancies of the missing variables are 
less as compared to the discrepancies of the deleted variables. 
Example 2 revisited: This example is based on the simulation 
data of Example 2 and here we have also got same conclusion as 
Example 1 revisited (Figures 2 & 4).

Examples 1 and 2 revisited: In this example, we have used 
DKL  values for real data for drawing box plots for each cases 
(deleted and missing). From Figure 5, we have observed that x2 
is more in uential than x1. Moreover the discrepancies are much 
less in missing case than deleted case. We have got same result in 
simulation study and are illustrated in Figure 6.

Evaluation of Predictive Probability of a Logistic Model

We consider the logistic model as

( ) ( ) ( )( )Pr 1| , exp / 1 expy x x xβ β β= = +

The probability that a future response yf will be a success is 
given by

( ) ( ) ( )Pr 1| , exp / 1 expf f f fy x x xβ β β = = + 
 

We assume that the conditional density of *
(r)
fx  given * fx  is 

independent of β  where * fx  denotes the future explanatory 

variables without variables (r)
fx . Then predictive probabilities of 

fy  will be a success for models are given by

( ) ( ) ( )Pr 1| , P  r  | 1| ,f f f fy x data y x f data dβ β β= = =∫

and

    
( ) ( ) ( )* *Pr 1| , Pr 1| , |   f f f fy x data y x f data dβ β β= = =∫

respectively. Simple analytically tractable priors are not 
available here. Numerical integration techniques might be used 

for some specified priors to approximate ( )Pr 1| ,f fy x data=  and 

( )Pr 1| * ,f fy x data= , respectively.

Normal approximation for the posterior density

Let us suppose that the sample size is large. Lindley [12] 

stated that the posterior density ( )|f dataβ may then be well 
approximated by its asymptotic normal form as

( ) ( )ˆ| ,
p

f data Nβ β≈ ∑

where 
^
β is the maximum likelihood estimate of β, ∑  = (-H)-1 

and H is the Hessian of log L(β) evaluated at 
^
β .

For the logistic model (xi), the Hessian H=(hji(
^
β )) evaluated 

at 
^
β  is given by 

( ) ( )
( )( )2

1

ˆexpˆ , j, l 0,1, ..., k,
ˆ1 exp

n ij il i

jl
i

i

x x x
h

x

β
β

β=

∑= − =
+

Where xij is the jth component of ix  with 0ix  = 1. For given 

,   f fx xz β=  will have approximately a posteriori a normal 

distribution with mean fx β
∧

= fx β
∧

 and variance 2 'f f
fx

d x xΣ=

, and with probability density function 2   d,f fx
z

x
bφ

 
 
 

. Using 

the transformation we can approximate ( )   ,ff x dataβ  by

( ) ( )
( )

2
exp

Pr 1| , | .,1 ex
   

p
f f

f
x f

x

z
y x data z b dzdz

φ
 
 = ≈ ∫  +  

Analytical evaluation of (xi) is very difficult. We can however 
evaluate then by numerical integration techniques viz Gauss-
Hermite Quadrature (Abramowitz and Stegun [13]), Normal 
approximation (Cox [14]), Laplace’s approximation (de Bruijn 
[15]).

If the sample size is small, the posterior normality assumption 
may not be accurate. Therefore, we consider Flat prior 
approximation (Tierney and Kadane [16]) as an alternative 
approach using the Laplace’s method for integrals.

Effect of the variables fx

Here we assume that the future variables fx are dependent 

and the density of fx is p-dimensional multivariate normal i.e.

( ) ( ),  f
p

f x N n ψ≡

The conditional density of ( )
f

r
x  for given * fx is  
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( ) ( ) ( )( )  | * * , *f f
r rrr

f x x N n ψ  ≡ 
 

The probability of fy as a success when 
( )
f

r
x is missing given 

by

( ) ( )
( ) ( )**

(r) (r)

exp
Pr 1| ,

1 exp
  

f
ff f f f

f

x
y x f x x dx

x

β

β
β= = ∫

+
           

     

1/2

2

0 1 1

* /
k r k k

f
i i i i

i i k r ij k r

x n ki jφ β β β β
−

= = − + = − +

     ≈ + + Ψ ∑ ∑ ∑         

* ( )g β=  (Say)

Then the predictive probability of fy  as a success when (r)
fx

is missing given by

( ) ( ) ( )* *1 , .  f fpr y x data g f data dβ β β= = ∫        (xii)

The integral in (xii) can be evaluated as the integral in (xi) 
using Taylor’s and Laplace’s approximations.

If, instead, the future variables 
1

fx ,…, f

k
x are independently 

and normally distributed with mean 
i

η  and variance 2

i
ψ  (i = 1, 

2, … , k), then the conditional density of ( )
f

r
x is

( ) ( )
*|f f f

r r
f x x f x   ≡   
    .

Consequently, we get

( ) ( )
( ) ( )*

(r) (r)

exp
Pr 1| ,

1 e
 

x
 

p

f

f f f f

f

x
y x f x dx

x

β

β
β= = ∫

+

1/2
2 2 2

0 1 1

/
k r k k

f
i i i i i

i i k r i k r

x n kiφ β β β
−

= = − + = − +

     ≈ + + Ψ   ∑ ∑ ∑         

( )g β= (Say)

See Aitchison and Begg [17] in this context. Again,

( ) ( ) ( )Pr 1| , data |data  f fy x g f dβ β β= = ∫

Variables fx  are dichotomous

Here we assume that the variables fx are independent and 

they can take only two values 0 or 1. We also assume that f
ix  is 

distributed as

( ) ( )1Pr 1
f f

x xf f i i
i i ii

x x θ θ
−

= = −

If ( )
f

r
x is missing the probability of fy as a success is given by

 ( ) ( )
( ) ( ) ( )

1 1 1

101 0

exp
Pr 1| * , ... 1

1 exp

f
fk f xxf f ii

i iff f i k rx xk r
k

x
y x h

x

β
β θ θ β

β

−

= − +=− + =

∑ ∑ ∏= = − =
+

(Say).

The predictive probability of fy as a success when ( )
f

r
x

 
is 

missing is given by

( ) ( ) ( )Pr 1| * , data |data . f fy x h f dβ β β= = ∫         (xiii)

If the sample size is large, assuming the normality assumption 
for the posterior density we can approximate (xiii) using Taylor’s 
theorem, Laplace’s method and normal approximation.

Example: one variable case

Here we consider two different logistic models based on 
any single variable either 

1
x  or 

2
x . We want to measure the 

discrepancies between the predictive probability ˆ
i

p , based 
on a single variable ix when f

ix is known, and the predictive 
probability

0
p̂ , based on xi alone when 

2

fx is missing, to assess 

the influence of the missing variable f
ix  , i = 1, 2. The predictive 

probability ˆ
i

p is determined using quadrature approximation 
and the predictive probability 

0
p̂ is determined using second 

order Taylor’s approximation.

We assume that the marginal densities of the future variables 

1

fx  and 
2

fx  are normal with means 33.35, 78.24 and variances 
65.39, 1827.0 respectively, where means and variances are the 
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estimated sample means and sample variances from the observed 
data. We employ the absolute difference of probabilities and 
Kullback-Leibler divergence measure to assess the influence 
of the missing variable. The discrepancies are drawn in Figure 
7. Here we see that the discrepancies due to missing 

1

fx  in the 
predictive probability based on 

1
x  are very large compared to 

the discrepancies due to missing 
2

fx  in the predictive probability 
based on 

2
x . The discrepancies are less around the mean of the 

missing variable.

Example: two-variable Case

Now we consider that the predictive probability based on 
two variables 

1

fx  and 
2

fx  when both 
1

fx  and 
2

fx  are known 
is denoted by 

12
p̂

 
and the predictive probability ˆ

ij
p , 0,1i = , 

0, 2j = and ( ) ( ), 1,2i j ≠  based on 
1

x  and 
2

x  when any future 
variable is missing. “0” indicates missing variable. Here also 
the predictive probability 

12
p̂ is determined using quadrature 

approximation and predictive probabilities 
10

p̂ , 
02

p̂ and 
00

p̂
 
are 

determined using second order Taylor’s approximation. Here we 

assume that the joint density of     and      is bivariate normal 
with correlation coefficient -0.33 which is the estimated sample 
correlation coefficient from the observed data. The absolute 
differences of the two predictive probabilities 

12
p̂ and 

02
p̂ when 

1

fx is missing and the absolute differences of the two predictive 
probabilities 

12
p̂ and 

10
p̂ when 

2

fx  is missing are drawn in Figure 
8. Kullback-Leibler directed divergence DKL are drawn in Figure 
9. The discrepancies when 

1

fx  is missing and for different given 
values of the other variable for both the cases are close together 
since the correlation between 

1

fx and 
2

fx  are very small. The 

discrepancies due to missing 
1

fx  are very large compared to 

missing 
2

fx  except near the mean of the missing variable. If both 

1

fx  and 
2

fx  are missing the discrepancies are drawn in Figure 10. 
These discrepancies are very similar to the discrepancies due to 
missing 

1

fx  alone in the predictive probability based on 
1

x  and 

2
x  since the contribution of 

2
x  is negligible.

Group A                                                                    Group B

Figure 1: Three dimensional scatter plots based on real data for DKL when x1 is deleted

1

fx
2

fx
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                    Group A                                                                   Group B

Figure 2: Three dimensional scatter plots based on simulated data for DKL when x1 is deleted

                    Group A                                                                   Group B

Figure 3: Three dimensional scatter plots based on real data for DKL when xf
1 is missing
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Group A                                                                Group B

Figure 4: Three dimensional scatter plots based on simulated data for DKL when x1 is missing

    
           Treatment A            Treatment B

Figure 5: Box plot for DKL based on real data
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               Treatment A         Treatment B
Figure 6: Box plot for DKL based on simulated data

    f
ix  is missing         2x f

 is missing

   Kullback-Leibler directed divergence DKL

            
f

ix  is missing   2x f
 is missing

Figure 7: Absolute difference 0 ,  1, 2iP P i
∧ ∧
− =
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Figure 8: Absolute difference 
12 10

^ ^
p p−

            xf
1 is missing

           xf
2 is missing

Figure 9: Kullback-Leibler directed divergence DKL
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Concluding Remarks
In our present study we have observed that the discrepancies 

are minimum around the mean of the deleted variables as well as 
the mean of the missing future variables in both the logistic model 
and the log-odds ratio; the discrepancies are larger if the deleted 
or missing variables are more influential; the discrepancies in the 
deleted case are higher than the missing case.

In this present paper we studied the important problem of 
predictive influence of variables on the log odds ratio under a 
Bayesian set up. The treatment difference

( ) ( )Pr Y 1| 1,x Pr Y 1| 0,xi i i i i iZ Z= = − = =

Or the risk of ratio

( ) ( )Pr Y 1| 1,x / Pr Y 1| 1,xi i i i i iZ Z= = = =

can also be studied along the same lines.

We have also considered the influence of missing future 
explanatory variables in a logistic model. Influence of missing 
future explanatory variables in a Probit and complementary log-
log models can also be studied in similar fashion.
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